WSLHD
Skip navigation
Please use this identifier to cite or link to this item: https://wslhd.intersearch.com.au/wslhdjspui/handle/1/9562
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCharney, M.-
dc.contributor.authorFoster, Sheryl L.-
dc.contributor.authorShukla, V.-
dc.contributor.authorZhao, W.-
dc.contributor.authorJiang, S. H.-
dc.contributor.authorKozlowska, K.-
dc.contributor.authorLin, A.-
dc.date.accessioned2024-05-16T03:11:06Z-
dc.date.available2024-05-16T03:11:06Z-
dc.date.issued2024-
dc.identifier.citationNeuroImage Clinical 41:103557, 2024-
dc.identifier.urihttps://wslhd.intersearch.com.au/wslhdjspui/handle/1/9562-
dc.description.abstractOBJECTIVES: In vivo magnetic resonance spectroscopy (MRS) was used to investigate neurometabolic homeostasis in children with functional neurological disorder (FND) in three regions of interest: supplementary motor area (SMA), anterior default mode network (aDMN), and posterior default mode network (dDMN). Metabolites assessed included N-acetyl aspartate (NAA), a marker of neuron function; myo-inositol (mI), a glial-cell marker; choline (Cho), a membrane marker; glutamate plus glutamine (Glx), a marker of excitatory neurotransmission; gamma-aminobutyric acid (GABA), a marker of inhibitor neurotransmission; and creatine (Cr), an energy marker. The relationship between excitatory (glutamate and glutamine) and inhibitory (GABA) neurotransmitter (E/I) balance was also examined. METHODS: MRS data were acquired for 32 children with mixed FND (25 girls, 7 boys, aged 10.00 to 16.08 years) and 41 healthy controls of similar age using both short echo point-resolved spectroscopy (PRESS) and Mescher-Garwood point-resolved spectroscopy (MEGAPRESS) sequences in the three regions of interest. RESULTS: In the SMA, children with FND had lower NAA/Cr, mI/Cr (trend level), and GABA/Cr ratios. In the aDMN, no group differences in metabolite ratios were found. In the pDMN, children with FND had lower NAA/Cr and mI/Cr (trend level) ratios. While no group differences in E/I balance were found (FND vs. controls), E/I balance in the aDMN was lower in children with functional seizures-a subgroup within the FND group. Pearson correlations found that increased arousal (indexed by higher heart rate) was associated with lower mI/Cr in the SMA and pDMN. CONCLUSIONS: Our findings of multiple differences in neurometabolites in children with FND suggest dysfunction on multiple levels of the biological system: the neuron (lower NAA), the glial cell (lower mI), and inhibitory neurotransmission (lower GABA), as well as dysfunction in energy regulation in the subgroup with functional seizures. Copyright 2023 The Author(s). Published by Elsevier Inc. All rights reserved.-
dc.subjectGlutamine-
dc.subjectGlutamic Acid-
dc.subjectSeizures-
dc.subjectAspartic Acid-
dc.subjectCreatine-
dc.subjectCholine-
dc.subjectConversion Disorder-
dc.titleNeurometabolic alterations in children and adolescents with functional neurological disorder-
dc.typeJournal Article-
dc.identifier.doihttps://dx.doi.org/10.1016/j.nicl.2023.103557-
dc.identifier.journaltitleNeuroImage Clinical-
dc.identifier.departmentRadiology-
dc.contributor.wslhdFoster, Sheryl L.-
dc.identifier.pmid38219534-
dc.identifier.facilityWestmead-
Appears in Collections:Westmead Hospital 2019 - 2024

Files in This Item:
There are no files associated with this item.


Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.