Please use this identifier to cite or link to this item:
https://wslhd.intersearch.com.au/wslhdjspui/handle/1/9726
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lippi, G. | - |
dc.contributor.author | Mattiuzzi, C. | - |
dc.contributor.author | Favaloro, Emmanuel J. | - |
dc.date.accessioned | 2024-06-04T03:58:46Z | - |
dc.date.available | 2024-06-04T03:58:46Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Journal of Medical Biochemistry 43(1):1-10, 2024 | - |
dc.identifier.uri | https://wslhd.intersearch.com.au/wslhdjspui/handle/1/9726 | - |
dc.description.abstract | The use of artificial intelligence (AI) has become widespread in many areas of science and medicine, including laboratory medicine. Although it seems obvious that the analytical and post-analytical phases could be the most important fields of application in laboratory medicine, a kaleidoscope of new opportunities has emerged to extend the benefits of AI to many manual labor-intensive activities belonging to the pre-analytical phase, which are inherently characterized by enhanced vulnerability and higher risk of errors. These potential applications involve increasing the appropriateness of test prescription (with computerized physician order entry or demand management tools), improved specimen collection (using active patient recognition, automated specimen labeling, vein recognition and blood collection assistance, along with automated blood drawing), more efficient sample transportation (facilitated by the use of pneumatic transport systems or drones, and monitored with smart blood tubes or data loggers), systematic evaluation of sample quality (by measuring serum indices, fill volume or for detecting sample clotting), as well as error detection and analysis. Therefore, this opinion paper aims to discuss the state-of-the-art and some future possibilities of AI in the preanalytical phase.Copyright 2024 Society of Medical Biochemists of Serbia. All rights reserved. | - |
dc.title | Artificial Intelligence in the Pre-Analytical Phase: State-of-the Art and Future Perspectives | - |
dc.type | Journal Article | - |
dc.identifier.doi | https://dx.doi.org/10.5937/jomb0-45936 | - |
dc.subject.keywords | artificial intelligence | - |
dc.subject.keywords | preanalytical variability | - |
dc.subject.keywords | robotics | - |
dc.subject.keywords | drone | - |
dc.subject.keywords | health care facility | - |
dc.subject.keywords | laboratory information system | - |
dc.subject.keywords | peripheral venous catheter | - |
dc.identifier.journaltitle | Journal of Medical Biochemistry | - |
dc.identifier.department | Haematology | - |
dc.contributor.wslhd | Favaloro, Emmanuel J. | - |
dc.identifier.pmid | 2030710072 | - |
dc.identifier.facility | Westmead | - |
Appears in Collections: | Westmead Hospital 2019 - 2024 |
Files in This Item:
There are no files associated with this item.
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.